On the classification of sub-Riemannian structures on a 5D two-step nilpotent Lie group

نویسندگان

چکیده

We classify the left-invariant sub-Riemannian structures on unique five-dimensional simply connected two-step nilpotent Lie group with two-dimensional commutator subgroup; this 5D is first twostep beyond three-and Heisenberg groups. Alongside, we also present a classification, up to automorphism, of subspaces associated algebra (together complete set invariants).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sub-Riemannian structures on 3D Lie groups

We give a complete classification of left-invariant sub-Riemannian structures on three dimensional Lie groups in terms of the basic differential invariants. As a corollary we explicitly find a sub-Riemannian isometry between the nonisomorphic Lie groups SL(2) and A(R)× S, where A(R) denotes the group of orientation preserving affine maps on the real line.

متن کامل

On 2-step, corank 2 nilpotent sub-Riemannian metrics

In this paper we study the nilpotent 2-step, corank 2 sub-Riemannian metrics that are nilpotent approximations of general sub-Riemannian metrics. We exhibit optimal syntheses for these problems. It turns out that in general the cut time is not equal to the first conjugate time but has a simple explicit expression. As a byproduct of this study we get some smoothness properties of the spherical H...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

The Space of Bounded Spherical Functions on the Free Two Step Nilpotent Lie Group

Let N be a connected and simply connected 2-step nilpotent Lie group and K be a compact subgroup of Aut(N). We say that (K,N) is a Gelfand pair when the set of integrable K-invariant functions on N forms an abelian algebra under convolution. In this paper, we construct a one-to-one correspondence between the set ∆(K, N) of bounded spherical functions for such a Gelfand pair and a set A(K, N) of...

متن کامل

Riemannian Submersions and Lattices in 2-step Nilpotent Lie Groups

We consider simply connected, 2-step nilpotent Lie groups N, all of which are diffeomorphic to Euclidean spaces via the Lie group exponential map exp : ˆ → N. We show that every such N with a suitable left invariant metric is the base space of a Riemannian submersion ρ : N* → N, where the fibers of ρ are flat, totally geodesic Euclidean spaces. The left invariant metric and Lie algebra of N* ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematics

سال: 2023

ISSN: ['2336-1298', '1804-1388']

DOI: https://doi.org/10.46298/cm.10550